Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712039

RESUMO

Neuroblastoma is a common pediatric cancer, where preclinical studies suggest that a mesenchymal-like gene expression program contributes to chemotherapy resistance. However, clinical outcomes remain poor, implying we need a better understanding of the relationship between patient tumor heterogeneity and preclinical models. Here, we generated single-cell RNA-seq maps of neuroblastoma cell lines, patient-derived xenograft models (PDX), and a genetically engineered mouse model (GEMM). We developed an unsupervised machine learning approach ('automatic consensus nonnegative matrix factorization' (acNMF)) to compare the gene expression programs found in preclinical models to a large cohort of patient tumors. We confirmed a weakly expressed, mesenchymal-like program in otherwise adrenergic cancer cells in some pre-treated high-risk patient tumors, but this appears distinct from the presumptive drug-resistance mesenchymal programs evident in cell lines. Surprisingly however, this weak-mesenchymal-like program was maintained in PDX and could be chemotherapy-induced in our GEMM after only 24 hours, suggesting an uncharacterized therapy-escape mechanism. Collectively, our findings improve the understanding of how neuroblastoma patient tumor heterogeneity is reflected in preclinical models, provides a comprehensive integrated resource, and a generalizable set of computational methodologies for the joint analysis of clinical and pre-clinical single-cell RNA-seq datasets.

2.
Biochem Biophys Res Commun ; 712-713: 149936, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640736

RESUMO

As cisplatin is one of the most broadly used chemotherapeutics, it is widely tested in vitro & in vivo assays, involving attempts to better understand its mechanism of action, develop strategies to mitigate its toxicity, or develop new drug combinations. Presently, for in vitro assays, dissolving cisplatin in dimethyl sulfoxide (DMSO) is discouraged due to its significant reduction in drug activity, Alternatively, inorganic solvents like normal saline (NS) are recommended. However, this approach is still problematic, including 1) instability of cisplatin in NS, 2) limited solubility, 3) the need to avoid long-term storage at -80 °C (or -20 °C) after dissolving, and 4) complications when combining with other DMSO-solubilized compounds. Here, we report a DMSO-HCl mixture as an alternative solvent to address these challenges. Cisplatin in DMSO-HCl not only retains comparable drug activity to cisplatin in NS but also exhibits increased stability over an extended period. Our brief report sheds light on cisplatin action, providing insights to aid in cancer research in vitro.


Assuntos
Antineoplásicos , Cisplatino , Dimetil Sulfóxido , Solventes , Cisplatino/farmacologia , Cisplatino/química , Solventes/química , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Solubilidade , Estabilidade de Medicamentos , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio
3.
Healthcare (Basel) ; 12(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470687

RESUMO

The aim of this study is to enhance comprehension of the different types and features of dementia, including their symptoms, diagnosis and medical treatment, and to propose various evidence-based exercise interventions and their clinical applications tailored to each specific type of dementia. The theoretical review includes the analysis of publications in the scientific databases PubMed/Medline, Ebsco, Scielo, and Google. A total of 177 articles were found, of which 84 were studied in depth. With the prevalence of all forms of dementia projected to increase from 57.4 million in 2019 to 152.8 million in 2050, personalized treatment strategies are needed. This review discusses various forms of dementia, including their pathologies, diagnostic criteria, and prevalence rates. The importance of accurate diagnosis and tailored care is emphasized, as well as the effectiveness of physical exercise in improving cognitive function in dementia patients. For Alzheimer's, a combination of drug therapies and exercises is recommended to enhance cerebral blood flow and neurotransmitter activity. To improve cognitive and motor functions in Lewy body dementia, a combination of pharmacological and physical therapies is recommended. For managing frontotemporal dementia, a mix of medication and exercises aimed at emotion regulation, including aerobic exercises, and a unified protocol, is suggested. For mild cognitive impairment, aerobic and functional exercises are important in delaying cognitive decline and enhancing cognitive performance. In conclusion, individualized care and treatment plans tailored to the specific characteristics of each disease type can improve the quality of life for individuals with this condition and effectively manage this growing global health issue.

4.
Nat Commun ; 14(1): 7332, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957169

RESUMO

Combination chemotherapy is crucial for successfully treating cancer. However, the enormous number of possible drug combinations means discovering safe and effective combinations remains a significant challenge. To improve this process, we conduct large-scale targeted CRISPR knockout screens in drug-treated cells, creating a genetic map of druggable genes that sensitize cells to commonly used chemotherapeutics. We prioritize neuroblastoma, the most common extracranial pediatric solid tumor, where ~50% of high-risk patients do not survive. Our screen examines all druggable gene knockouts in 18 cell lines (10 neuroblastoma, 8 others) treated with 8 widely used drugs, resulting in 94,320 unique combination-cell line perturbations, which is comparable to the largest existing drug combination screens. Using dense drug-drug rescreening, we find that the top CRISPR-nominated drug combinations are more synergistic than standard-of-care combinations, suggesting existing combinations could be improved. As proof of principle, we discover that inhibition of PRKDC, a component of the non-homologous end-joining pathway, sensitizes high-risk neuroblastoma cells to the standard-of-care drug doxorubicin in vitro and in vivo using patient-derived xenograft (PDX) models. Our findings provide a valuable resource and demonstrate the feasibility of using targeted CRISPR knockout to discover combinations with common chemotherapeutics, a methodology with application across all cancers.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neuroblastoma , Humanos , Criança , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Técnicas de Inativação de Genes , Combinação de Medicamentos , Linhagem Celular Tumoral
5.
Cells ; 12(22)2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998328

RESUMO

Despite numerous efforts, the therapeutic advancement for neuroblastoma and other cancer treatments is still ongoing due to multiple challenges, such as the increasing prevalence of cancers and therapy resistance development in tumors. To overcome such obstacles, drug combinations are one of the promising applications. However, identifying and implementing effective drug combinations are critical for achieving favorable treatment outcomes. Given the enormous possibilities of combinations, a rational approach is required to predict the impact of drug combinations. Thus, CRISPR-Cas-based and other approaches, such as high-throughput pharmacological and genetic screening approaches, have been used to identify possible drug combinations. In particular, the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats) is a powerful tool that enables us to efficiently identify possible drug combinations that can improve treatment outcomes by reducing the total search space. In this review, we discuss the rational approaches to identifying, examining, and predicting drug combinations and their impact.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Combinação de Medicamentos
6.
Nucleic Acids Res ; 50(14): e80, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35536287

RESUMO

Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification.


Assuntos
Modelos Estatísticos , Transcriptoma , Animais , Teorema de Bayes , Imunofluorescência , Camundongos
7.
Nucleic Acids Res ; 50(6): 3254-3275, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35212371

RESUMO

The 48 human nuclear receptors (NRs) form a superfamily of transcription factors that regulate major physiological and pathological processes. Emerging evidence suggests that NR crosstalk can fundamentally change our understanding of NR biology, but detailed molecular mechanisms of crosstalk are lacking. Here, we report the molecular basis of crosstalk between the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), where they form a novel heterodimer, resulting in their mutual inhibition. PXR and CAR regulate drug metabolism and energy metabolism. Although they have been broadly perceived as functionally redundant, a growing number of reports suggests a mutual inhibitory relation, but their precise mode of coordinated action remains unknown. Using methods including RNA sequencing, small-angle X-ray scattering and crosslinking mass spectrometry we demonstrate that the mutual inhibition altered gene expression globally and is attributed to the novel PXR-CAR heterodimerization via the same interface used by each receptor to heterodimerize with its functional partner, retinoid X receptor (RXR). These findings establish an unexpected functional relation between PXR, CAR and RXR, change the perceived functional relation between PXR and CAR, open new perspectives on elucidating their role and designing approaches to regulate them, and highlight the importance to comprehensively investigate nuclear receptor crosstalk.


Assuntos
Receptor Constitutivo de Androstano/metabolismo , Receptor de Pregnano X/metabolismo , Dimerização , Regulação da Expressão Gênica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo
8.
IEEE Trans Image Process ; 31: 664-677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914591

RESUMO

Recent deep neural network-based research to enhance image compression performance can be divided into three categories: learnable codecs, postprocessing networks, and compact representation networks. The learnable codec has been designed for end-to-end learning beyond the conventional compression modules. The postprocessing network increases the quality of decoded images using example-based learning. The compact representation network is learned to reduce the capacity of an input image, reducing the bit rate while maintaining the quality of the decoded image. However, these approaches are not compatible with existing codecs or are not optimal for increasing coding efficiency. Specifically, it is difficult to achieve optimal learning in previous studies using a compact representation network due to the inaccurate consideration of the codecs. In this paper, we propose a novel standard compatible image compression framework based on auxiliary codec networks (ACNs). In addition, ACNs are designed to imitate image degradation operations of the existing codec, which delivers more accurate gradients to the compact representation network. Therefore, compact representation and postprocessing networks can be learned effectively and optimally. We demonstrate that the proposed framework based on the JPEG and High Efficiency Video Coding standard substantially outperforms existing image compression algorithms in a standard compatible manner.

9.
Nat Aging ; 2(10): 923-940, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36636325

RESUMO

Recent proteome and transcriptome profiling of Alzheimer's disease (AD) brains reveals RNA splicing dysfunction and U1 small nuclear ribonucleoprotein (snRNP) pathology containing U1-70K and its N-terminal 40-KDa fragment (N40K). Here we present a causative role of U1 snRNP dysfunction to neurodegeneration in primary neurons and transgenic mice (N40K-Tg), in which N40K expression exerts a dominant-negative effect to downregulate full-length U1-70K. N40K-Tg recapitulates N40K insolubility, erroneous splicing events, neuronal degeneration and cognitive impairment. Specifically, N40K-Tg shows the reduction of GABAergic synapse components (e.g., the GABA receptor subunit of GABRA2), and concomitant postsynaptic hyperexcitability that is rescued by a GABA receptor agonist. Crossing of N40K-Tg and the 5xFAD amyloidosis model indicates that the RNA splicing defect synergizes with the amyloid cascade to remodel the brain transcriptome and proteome, deregulate synaptic proteins, and accelerate cognitive decline. Thus, our results support the contribution of U1 snRNP-mediated splicing dysfunction to AD pathogenesis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Ribonucleoproteína Nuclear Pequena U1/genética , Doença de Alzheimer/genética , Proteoma/genética , Splicing de RNA/genética , Disfunção Cognitiva/genética
10.
Bioprocess Biosyst Eng ; 44(4): 913-925, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33502625

RESUMO

The sweet-tasting protein brazzein offers considerable potential as a functional sweetener with antioxidant, anti-inflammatory, and anti-allergic properties. Here, we optimized a chemically defined medium to produce secretory recombinant brazzein in Kluyveromyces lactis, with applications in mass production. Compositions of defined media were investigated for two phases of fermentation: the first phase for cell growth, and the second for maximum brazzein secretory production. Secretory brazzein expressed in the optimized defined medium exhibited higher purity than in the complex medium; purification was by ultrafiltration using a molecular weight cutoff, yielding approximately 107 mg L-1. Moreover, the total media cost in this defined medium system was approximately 11% of that in the optimized complex medium to generate equal amounts of brazzein. Therefore, the K. lactis expression system is useful for mass-producing recombinant brazzein with high purity and yield at low production cost and indicates a promising potential for applications in the food industry.


Assuntos
Kluyveromyces/metabolismo , Proteínas de Plantas/química , Anti-Inflamatórios/química , Antioxidantes/química , Biotecnologia/métodos , Meios de Cultura , Densitometria , Fermentação , Concentração de Íons de Hidrogênio , Microbiologia Industrial/métodos , Peso Molecular , Permeabilidade , Proteínas Recombinantes/química , Edulcorantes/química , Temperatura
11.
J Neurodev Disord ; 12(1): 29, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172406

RESUMO

BACKGROUND: Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MeCP2) gene. While MeCP2 mutations are lethal in most males, females survive birth but show severe neurological defects. Because X-chromosome inactivation (XCI) is a random process, approximately 50% of the cells silence the wild-type (WT) copy of the MeCP2 gene. Thus, reactivating the silent WT copy of MeCP2 could provide therapeutic intervention for RTT. METHODS: Toward this goal, we screened ~ 28,000 small-molecule compounds from several libraries using a MeCP2-luciferase reporter cell line and cortical neurons from a MeCP2-EGFP mouse model. We used gain/increase of luminescence or fluorescence as a readout of MeCP2 reactivation and tested the efficacy of these drugs under different drug regimens, conditions, and cellular contexts. RESULTS: We identified inhibitors of the JAK/STAT pathway as XCI-reactivating agents, both by in vitro and ex vivo assays. In particular, we show that AG-490, a Janus Kinase 2 (JAK2) kinase inhibitor, and Jaki, a pan JAK/STAT inhibitor, are capable of reactivating MeCP2 from the inactive X chromosome, in different cellular contexts. CONCLUSIONS: Our results suggest that inhibition of the JAK/STAT pathway is a new potential pathway to reinstate MeCP2 gene expression as an efficient RTT treatment.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Animais , Cromossomos , Feminino , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Mutação , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Inativação do Cromossomo X
12.
Elife ; 92020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001025

RESUMO

Aberrant HOXA9 expression is a hallmark of most aggressive acute leukemias, notably those with KMT2A (MLL) gene rearrangements. HOXA9 overexpression not only predicts poor diagnosis and outcome but also plays a critical role in leukemia transformation and maintenance. However, our current understanding of HOXA9 regulation in leukemia is limited, hindering development of therapeutic strategies. Here, we generated the HOXA9-mCherry knock-in reporter cell lines to dissect HOXA9 regulation. By utilizing the reporter and CRISPR/Cas9 screens, we identified transcription factors controlling HOXA9 expression, including a novel regulator, USF2, whose depletion significantly down-regulated HOXA9 expression and impaired MLLr leukemia cell proliferation. Ectopic expression of Hoxa9 rescued impaired leukemia cell proliferation upon USF2 loss. Cut and Run analysis revealed the direct occupancy of USF2 at HOXA9 promoter in MLLr leukemia cells. Collectively, the HOXA9 reporter facilitated the functional interrogation of the HOXA9 regulome and has advanced our understanding of the molecular regulation network in HOXA9-driven leukemia.


Assuntos
Sistemas CRISPR-Cas , Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Leucemia/metabolismo , Fatores Estimuladores Upstream/metabolismo , Alelos , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Epigênese Genética , Genes Reporter , Histona-Lisina N-Metiltransferase/genética , Humanos , Proteína de Leucina Linfoide-Mieloide/genética
13.
Mol Autism ; 9: 45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140420

RESUMO

Background: Angelman syndrome (AS) is a severe neurodevelopmental disorder lacking effective therapies. AS is caused by mutations in ubiquitin protein ligase E3A (UBE3A), which is genomically imprinted such that only the maternally inherited copy is expressed in neurons. We previously demonstrated that topoisomerase I (Top1) inhibitors could successfully reactivate the dormant paternal allele of Ube3a in neurons of a mouse model of AS. We also previously showed that one such Top1 inhibitor, topotecan, could unsilence paternal UBE3A in induced pluripotent stem cell-derived neurons from individuals with AS. Although topotecan has been well-studied and is FDA-approved for cancer therapy, its limited CNS bioavailability will likely restrict the therapeutic use of topotecan in AS. The goal of this study was to identify additional Top1 inhibitors with similar efficacy as topotecan, with the expectation that these could be tested in the future for safety and CNS bioavailability to assess their potential as AS therapeutics. Methods: We tested 13 indenoisoquinoline-derived Top1 inhibitors to identify compounds that unsilence the paternal allele of Ube3a in mouse neurons. Primary cortical neurons were isolated from embryonic day 14.5 (E14.5) mice with a Ube3a-YFP fluorescent tag on the paternal allele (Ube3am+/pYFP mice) or mice that lack the maternal Ube3a allele and hence model AS (Ube3am-/p+ mice). Neurons were cultured for 7 days, treated with drug for 72 h, and examined for paternal UBE3A protein expression by Western blot or fluorescence immunostaining. Dose responses of the compounds were determined across a log range of drug treatments, and cytotoxicity was tested using a luciferase-based assay. Results: All 13 indenoisoquinoline-derived Top1 inhibitors unsilenced paternal Ube3a. Several compounds exhibited favorable paternal Ube3a unsilencing properties, similar to topotecan, and of these, indotecan (LMP400) was the most effective based on estimated Emax (maximum response of unsilencing paternal Ube3a) and EC50 (half maximal effective concentration). Conclusions: We provide pharmacological profiles of indenoisoquinoline-derived Top1 inhibitors as paternal Ube3a unsilencers. All 13 tested compounds were effective at unsilencing paternal Ube3a, although with variable efficacy and potency. Indotecan (LMP400) demonstrated a better pharmacological profile of Ube3a unsilencing compared to our previous lead compound, topotecan. Taken together, indotecan and its structural analogues are potential AS therapeutics whose translational potential in AS treatment should be further assessed.


Assuntos
Síndrome de Angelman/genética , Isoquinolinas/farmacologia , Inibidores da Topoisomerase I/farmacologia , Ubiquitina-Proteína Ligases/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Inativação Gênica/efeitos dos fármacos , Isoquinolinas/química , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidores da Topoisomerase I/química
14.
Nat Med ; 23(2): 213-222, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28024084

RESUMO

Prader-Willi syndrome (PWS) is an imprinting disorder caused by a deficiency of paternally expressed gene(s) in the 15q11-q13 chromosomal region. The regulation of imprinted gene expression in this region is coordinated by an imprinting center (PWS-IC). In individuals with PWS, genes responsible for PWS on the maternal chromosome are present, but repressed epigenetically, which provides an opportunity for the use of epigenetic therapy to restore expression from the maternal copies of PWS-associated genes. Through a high-content screen (HCS) of >9,000 small molecules, we discovered that UNC0638 and UNC0642-two selective inhibitors of euchromatic histone lysine N-methyltransferase-2 (EHMT2, also known as G9a)-activated the maternal (m) copy of candidate genes underlying PWS, including the SnoRNA cluster SNORD116, in cells from humans with PWS and also from a mouse model of PWS carrying a paternal (p) deletion from small nuclear ribonucleoprotein N (Snrpn (S)) to ubiquitin protein ligase E3A (Ube3a (U)) (mouse model referred to hereafter as m+/pΔS-U). Both UNC0642 and UNC0638 caused a selective reduction of the dimethylation of histone H3 lysine 9 (H3K9me2) at PWS-IC, without changing DNA methylation, when analyzed by bisulfite genomic sequencing. This indicates that histone modification is essential for the imprinting of candidate genes underlying PWS. UNC0642 displayed therapeutic effects in the PWS mouse model by improving the survival and the growth of m+/pΔS-U newborn pups. This study provides the first proof of principle for an epigenetics-based therapy for PWS.


Assuntos
Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Síndrome de Prader-Willi/genética , Quinazolinas/farmacologia , RNA Nucleolar Pequeno/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular , Modelos Animais de Doenças , Epigênese Genética , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/genética , Impressão Genômica , Código das Histonas/genética , Humanos , Imuno-Histoquímica , Masculino , Metilação/efeitos dos fármacos , Camundongos , Síndrome de Prader-Willi/metabolismo , RNA Nucleolar Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Ubiquitina-Proteína Ligases/genética , Proteínas Centrais de snRNP/genética
15.
PLoS One ; 11(5): e0156439, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27231886

RESUMO

Topoisomerase 1 (TOP1) inhibitors, including camptothecin and topotecan, covalently trap TOP1 on DNA, creating cleavage complexes (cc's) that must be resolved before gene transcription and DNA replication can proceed. We previously found that topotecan reduces the expression of long (>100 kb) genes and unsilences the paternal allele of Ube3a in neurons. Here, we sought to evaluate overlap between TOP1cc-dependent and -independent gene regulation in neurons. To do this, we utilized Top1 conditional knockout mice, Top1 knockdown, the CRISPR-Cas9 system to delete Top1, TOP1 catalytic inhibitors that do not generate TOP1cc's, and a TOP1 mutation (T718A) that stabilizes TOP1cc's. We found that topotecan treatment significantly alters the expression of many more genes, including long neuronal genes, immediate early genes, and paternal Ube3a, when compared to Top1 deletion. Our data show that topotecan has a stronger effect on neuronal transcription than Top1 deletion, and identifies TOP1cc-dependent and -independent contributions to gene expression.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Animais , DNA Topoisomerases Tipo I/deficiência , DNA Topoisomerases Tipo I/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Topotecan/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
Schizophr Res Treatment ; 2016: 6378137, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073698

RESUMO

Better the drugs you know than the drugs you do not know. Drug repurposing is a promising, fast, and cost effective method that can overcome traditional de novo drug discovery and development challenges of targeting neuropsychiatric and other disorders. Drug discovery and development targeting neuropsychiatric disorders are complicated because of the limitations in understanding pathophysiological phenomena. In addition, traditional de novo drug discovery and development are risky, expensive, and time-consuming processes. One alternative approach, drug repurposing, has emerged taking advantage of off-target effects of the existing drugs. In order to identify new opportunities for the existing drugs, it is essential for us to understand the mechanisms of action of drugs, both biologically and pharmacologically. By doing this, drug repurposing would be a more effective method to develop drugs against neuropsychiatric and other disorders. Here, we review the difficulties in drug discovery and development in neuropsychiatric disorders and the extent and perspectives of drug repurposing.

17.
Drug Discov Today ; 19(4): 469-73, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24184433

RESUMO

Since the invention of the first designer receptors exclusively activated by designer drugs (DREADDs), these engineered G protein-coupled receptors (GPCRs) have been widely applied in investigations of biological processes and behaviors. DREADD technology has emerged as a powerful tool with great potential for drug discovery and development. DREADDs can facilitate the identification of druggable targets and enable researchers to explore the activities of novel drugs against both known and orphan GPCRs. Here, we discuss how DREADDs can be used as novel tools for drug discovery and development.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Receptores Acoplados a Proteínas G/química
18.
Neuropsychopharmacology ; 38(5): 854-62, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23303063

RESUMO

Here, we describe a newly generated transgenic mouse in which the Gs DREADD (rM3Ds), an engineered G protein-coupled receptor, is selectively expressed in striatopallidal medium spiny neurons (MSNs). We first show that in vitro, rM3Ds can couple to Gαolf and induce cAMP accumulation in cultured neurons and HEK-T cells. The rM3Ds was then selectively and stably expressed in striatopallidal neurons by creating a transgenic mouse in which an adenosine2A (adora2a) receptor-containing bacterial artificial chromosome was employed to drive rM3Ds expression. In the adora2A-rM3Ds mouse, activation of rM3Ds by clozapine-N-oxide (CNO) induces DARPP-32 phosphorylation, consistent with the known consequence of activation of endogenous striatal Gαs-coupled GPCRs. We then tested whether CNO administration would produce behavioral responses associated with striatopallidal Gs signaling and in this regard CNO dose-dependently decreases spontaneous locomotor activity and inhibits novelty induced locomotor activity. Last, we show that CNO prevented behavioral sensitization to amphetamine and increased AMPAR/NMDAR ratios in transgene-expressing neurons of the nucleus accumbens shell. These studies demonstrate the utility of adora2a-rM3Ds transgenic mice for the selective and noninvasive modulation of Gαs signaling in specific neuronal populations in vivo.This unique tool provides a new resource for elucidating the roles of striatopallidal MSN Gαs signaling in other neurobehavioral contexts.


Assuntos
Corpo Estriado/citologia , AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Muscarínicos/genética , Inibidores da Captação Adrenérgica/farmacologia , Anfetamina/farmacologia , Animais , Animais Recém-Nascidos , Clozapina/análogos & derivados , Clozapina/farmacologia , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Proteínas de Fluorescência Verde/genética , Locomoção/efeitos dos fármacos , Locomoção/genética , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Receptor A2A de Adenosina/genética , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Proteína Vermelha Fluorescente
20.
Nature ; 481(7380): 185-9, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22190039

RESUMO

Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.


Assuntos
Alelos , Inativação Gênica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidores da Topoisomerase/farmacologia , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/genética , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Avaliação Pré-Clínica de Medicamentos , Pai , Feminino , Impressão Genômica/efeitos dos fármacos , Impressão Genômica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mães , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores da Topoisomerase/administração & dosagem , Inibidores da Topoisomerase/análise , Inibidores da Topoisomerase/farmacocinética , Topotecan/administração & dosagem , Topotecan/farmacocinética , Topotecan/farmacologia , Ubiquitina-Proteína Ligases/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...